arrow_back_ios

Main Menu

See All Software See All Instrumente See All Aufnehmer See All Schwingungsprüfung See All Elektroakustisch See All Akustische End-of-Line-Testsysteme See All Events See All Akademie See All Anwendungen See All Industrien See All Kalibrierung See All Ingenieurdienstleistungen See All Unterstützen
arrow_back_ios

Main Menu

See All Durability See All Reliability See All Analyse Simulation See All DAQ See All API Treiber See All Dienstprogramm See All Vibrationskontrolle See All Kalibrierung See All DAQ See All Handheld See All Industriell See All Power Analyzer See All Signalaufbereiter See All Akustik See All Strom und Spannung See All Weg See All Kraft See All Wägezellen See All Mehrkomponenten See All Druck See All Dehnung See All Dehnungsmessstreifen See All Temperatur See All Neigen See All Drehmoment See All Vibration See All Zubehör See All Steuerungen See All Messerreger See All Modalerreger See All Leistungsverstärker See All Shaker Systeme See All Testlösungen See All Aktoren See All Verbrennungsmotoren See All Betriebsfestigkeit See All eDrive See All Sensoren für Produktionstests See All Getriebe See All Turbolader See All Schulungskurse See All Akustik See All Anlagen- und Prozessüberwachung See All Elektrische Energie See All Kundenspezifische Sensoren See All NVH See All Smarte Sensoren See All Schwingbelastung See All Strukturelle Integrität See All Automobil & Bodentransport See All Druckkalibrierung | Sensor | Messumformer See All Kalibrierung oder Reparatur anfordern See All Kalibrierung und Verifizierung See All Kalibrierung Plus Vertrag See All Brüel & Kjær Support
arrow_back_ios

Main Menu

See All Aqira See All nCode Viewer (DE) See All Weibull++ - NEW TEST (DE) See All Weibull++ - NEW TEST (DE) See All BlockSim - New Test (DE) See All BlockSim - New Test (DE) See All XFRACAS - New Test (DE) See All XFMEA - New Test (DE) See All XFMEA - New Test (DE) See All RCM++ - New Test (DE) See All RCM++ - New Test (DE) See All SEP - New Test (DE) See All SEP - New Test (DE) See All Lambda Predict - New Test (DE) See All Lambda Predict - New Test (DE) See All MPC - New Test (DE) See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All API See All Elektroakustik See All Umgebungslärm See All Identifizierung der Lärmquelle See All Produkt-Lärm See All Schallleistung und Schalldruck See All Vorbeifahrgeräusche See All Produktionsprüfung und Qualitätssicherung See All Maschinenanalyse und -diagnose See All Strukturelle Gesundheitsüberwachung See All Strukturüberwachung See All Batterieprüfung See All Einführung in die Messung elektrischer Leistung bei transienten Vorgängen See All Transformator-Ersatzschaltbild | HBM See All Strukturelle Dynamik See All Prüfung der Materialeigenschaften See All Sicherstellung der strukturellen Integrität von Leichtbaustrukturen See All Elektrifizierung von Fahrzeugen See All Seiten, die nicht migriert wurden See All Software-Lizenzverwaltung

Reliability Analysis of a Storage Cluster System

This example is based on the example shown in Figure 8 of the article "Determining the Availability and Reliability of Storage Configurations" by Santosh Shetty, August 2002, as posted on Dell's website.

Example

 

Consider a "high-availability" cluster with a reliability block diagram (RBD), as shown next.

Figure 1: Storage Cluster System

Assume the following life distributions and parameters for the components: (Note that this example, unlike the original article, assumes no repair of failed components.)

 

  • Server: Exponential with mean = 45,753 hours
  • Switch: Exponential with mean = 255,358 hours
  • HBA: Exponential with mean = 252,550 hours
  • Controller: Exponential with mean = 68,961 hours

 

The objective of the analysis is to study the reliability of the system.

Analysis

 

Step 1: Create the RBD of the system in BlockSim, and then use the given information to configure the universal reliability definitions (URDs) of each block. For example, the following picture shows the Block Properties window of Server1. The inset shows the Model Wizard, which allows you to define the failure model of the block. The URDs of the other blocks can be configured in a similar manner.

Figure 2: Block Properties Window of Server1 and Model Wizard (inset)

Step 2: Once the URDs have been configured, analyze the diagram and obtain the system reliability equation of the system, as shown next. In this equation, each R is the reliability (1-cdf) function of the item. As an example, RServer2 is the reliability function of Server 2.

Figure 3: System Reliability Equation of the Storage Cluster System

Step 3: Generate system level plots to see more information about the system. The next two charts are component reliability importance plots at t = 8544 hr. Both plots (a tableau area plot and a bar chart) illustrate the same concept; that is, the higher the importance of the component, the higher its effect on system reliability.

Figure 4: Static Reliability Importance - Tableau Area Chart
Figure 5: Static Reliability Importance - Bar Chart

As you can see, the servers in this configuration are the most critical component, while the hubs are the least critical.

 

The following pictures show additional plots.

Figure 6: RI vs. Time Plot
Figure 7: System Reliability Plot
Figure 8: System Failure Rate Plot
Figure 9: System pdf plot

Step 4: Use BlockSim's Analytical Quick Calculation Pad (QCP) to obtain some of the most frequently requested reliability results. For example, the MTTF (mean time to failure) of the system is about 42,135 hours, as shown next.

Figure 10: Analytical QCP