Zuverlässigkeitswachstum - Datentypen
Zeit-bis-Ausfall Daten
Wenn Daten aus Entwicklungstests vorliegen, bei denen die Systeme kontinuierlich bis zum Ausfall in Betrieb waren, können Sie die Crow-AMSAA (NHPP) oder Duane-Modelle verwenden. Das Modul bietet eine Auswahl an Datentypen für individuell oder gruppierte Ausfallzeiten sowie zur Kombination von Daten aus verschiedenen identischen Systemen. Hierbei kann es sich um folgende Situationen handeln: alle Systeme sind gleichzeitig im Betrieb oder die genauen Betriebszeiten sind aufgezeichnet, d.h. für ausgefallene oder störungsfreie Systeme, sowie das Kalenderdatum für jeden Ausfall, so dass die Betriebszeiten der nicht beeinträchtigten Systeme ermittelt werden können, jeweils basierend auf der täglichen durchschnittlichen Nutzungsrate für den relevanten Zeitraum.
Mit dem Crow-AMSAA (NHPP) Modell haben Sie zusätzliche Analyseoptionen in bestimmten Situationen, wie in der Gap- oder Lückenanalyse (angenommen, dass ein Teil der Daten fehlerhaft ist oder fehlt) oder Change-of-Slope / Änderungsrate (sollte eine gravierende Veränderung im System-Design oder den Betriebs-/Umgebungsbedingungen eine signifikante Veränderung während des Testverfahrens ausgelöst haben).
Diskrete data (auch Attributdaten, One-Shot oder Erfolg/Misserfolg-Daten genannt) Wenn Daten aus One-Shot (Erfolg/Misserfolg) Zuverlässigkeitswachstumstests (mit Abhängigkeit vom Datentyp) vorliegen, unterstützt das Modul Mischdaten-Modelle, die mit Crow-Extended und Crow-Extended – Continuous-Evaluation genutzt werden können. Für diskrete Daten stellt die Software eine Auswahl von Datentypen zur Handhabung von Tests bereit, bei denen ein einziger Versuch für jede Designkonfiguration ausgeführt wird, mehrere Versuche pro Konfiguration oder eine Kombination von beiden Ansätzen. Das Modul unterstützt auch Fehlerdiskontierung, wenn Sie den spezifischen Ausfallmodus aus One-Shot-Folgeprüfungen aufgezeichnet haben.
Zuverlässigkeitsdaten
Wenn Sie ganz einfach die berechneten Zuverlässigkeitswerte für verschiedene Zeiten/Stufen innerhalb Entwicklungstestverfahrens analysieren wollen, können Sie die Modelle Standard-Gompertz, Modified-Gompertz, Lloyd-Lipow oder Logistik anwenden.
Zuverlässigkeitswachstum - Vorhersagen, Planung und Management
Das Modul Zuverlässigkeitswachstum unterstützt mehrere innovative Ansätze, die auf den traditionellen Zuverlässigkeitswachstumsmethoden aufbauen, wobei die realen Testmethoden und praktischen Anwendungen besser repräsentiert sind.
Zuverlässigkeitswachstum - Analyseergebnisse, Grafiken und Berichte
Für traditionelle Zuverlässigkeitswachstumsanalysen können Sie MTBF, Ausfall/Fehlerintensität oder Zuverlässigkeit bei gegebener Zeit / Stufe berechnen. Sie können die erforderlichen Tests bestimmen, um eine spezifische MTBF, Ausfall/Fehlerintensität oder Zuverlässigkeit zu demonstrieren. Zudem können Sie die erwartete Anzahl von Ausfällen bei gegebener Zeit bzw. Stufe einschätzen. Das Modul macht es einfach, eine Reihe von Funktionsgraphen und Diagrammen zur visuellen Präsentation Ihrer Analyse zu erstellen.
Ausfallmodus-Klassifikationen und Wirtschaftlichkeitsfaktoren
Obwohl traditionelle Zuverlässigkeitswachstumsanalysen die Hypothese erfordern, dass alle Designverbesserungen vor dem Ende des Tests (Test-Fix-Test) integriert werden, können viele realistische Testszenarien einige Ausfallmodi enthalten ohne durchgeführte Korrekturmaßnahmen sowie andere, bei denen alle Korrekturen auf einen späteren Zeitpunkt verschoben werden (Test-Fix-Find-Test oder Test-Find-Test). Mit den Modellen Crow-Extended und Crow-Extended – Continuous-Evaluation können Sie Fehlermodiklassifikationen anwenden, um die angemessene Analysebehandlung für jede dieser Management-Strategien anzusetzen. Für verzögerte Korrekturen nutzen beide Modelle Effektivitätsfaktoren als Hinweis, inwieweit die Ausfall/Fehlerintensität von jedem Modell nach vorgenommener Korrekturmaßnahme reduziert wird.
Analysen für installierte & reparierbare Systeme
Das Modul Zuverlässigkeitswachstum kann Analysen für in Feldeinsatz befindliche reparierbare Systeme realisieren. Einige der Modelle können für die Analyse von Daten aus reparierbaren im Feld arbeitenden Systemen unter typischen Einsatzbedingung beim Kunden genutzt werden. Solche Daten stammen eventuell aus einem Garantiesystem, Reparatur-Depot, betrieblichen Tests, usw. Die Modelle Power-Law oder Crow-AMSAA (NHPP) sind besonders für reparierbare Systemanalysen geeignet, basierend auf der Annahme von minimalen Reparaturen (d.h. System ist 'so-schlecht-wie-vorher' nach jeder Reparatur), um eine Vielzahl von nützlichen Metriken zu berechnen inklusive:
Sie können auch das Crow-Extended Modell für reparierbare Systeme im Feld nutzen, wenn Sie entsprechende Verbesserungen evaluieren wollen (z.B. Sprung in MTBF), die durch Umsetzung einer Reihe von Korrekturmaßnahmen für alle im Feld befindlichen Systeme erreicht werden könnten.
Das Zuverlässigkeit-Testdesign für reparierbare Systeme verwendet das NHPP-Modell (inhomogenen Poisson-Prozess) zur Bestimmung der notwendigen Testzeit pro System (oder Anzahl der zu testenden Systeme), um ein bestimmtes Zuverlässigkeitsziel zu demonstrieren in Bezug auf MTBF oder Ausfallintensität zu einem bestimmten Zeitpunkt.
Monte-Carlo Simulation
Sie können Datasets erstellen, die direkt in einem Standardfolio des Zuverlässigkeitswachstums analysiert werden können. Sie können auch das SimuMatic® Programm nutzen, um Ergebnisse aus einer großen Anzahl von Datenmengen automatisch zu analysieren und zu plotten, die per Simulation erstellt worden sind. Dieses integrierten Simulation-Tools finden Anwendung für eine Vielzahl von Zuverlässigkeitsmaßnahmen, wie beispielsweise:
This will bring together HBM, Brüel & Kjær, nCode, ReliaSoft, and Discom brands, helping you innovate faster for a cleaner, healthier, and more productive world.
This will bring together HBM, Brüel & Kjær, nCode, ReliaSoft, and Discom brands, helping you innovate faster for a cleaner, healthier, and more productive world.
This will bring together HBM, Brüel & Kjær, nCode, ReliaSoft, and Discom brands, helping you innovate faster for a cleaner, healthier, and more productive world.
This will bring together HBM, Brüel & Kjær, nCode, ReliaSoft, and Discom brands, helping you innovate faster for a cleaner, healthier, and more productive world.
This will bring together HBM, Brüel & Kjær, nCode, ReliaSoft, and Discom brands, helping you innovate faster for a cleaner, healthier, and more productive world.