arrow_back_ios

Main Menu

See All Acoustic End-of-Line Test Systems See All DAQ and instruments See All Electroacoustics See All Software See All Transducers See All Vibration Testing Equipment See All Academy See All Resource Center See All Applications See All Industries See All Insights See All Services See All Support See All Our Business See All Our History See All Our Sustainability Commitment See All Global Presence
arrow_back_ios

Main Menu

See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All DAQ Systems See All High Precision and Calibration Systems See All Industrial electronics See All Power Analyser See All S&V Hand-held devices See All S&V Signal conditioner See All Test Solutions See All DAQ Software See All Drivers & API See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All Test Data Management See All Utility See All Vibration Control See All Acoustic See All Current / voltage See All Displacement See All Load Cells See All Pressure See All Strain Gauges See All Torque See All Vibration See All LDS Shaker Systems See All Power Amplifiers See All Vibration Controllers See All Accessories for Vibration Testing Equipment See All Training Courses See All Articles See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Data Acquisition & Analysis See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Smart Sensors See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance See All Our People
arrow_back_ios

Main Menu

See All CANHEAD See All GenHS See All LAN-XI See All MGCplus See All Optical Interrogators See All QuantumX See All SomatXR See All Accessories See All Accessories See All BK Connect / Pulse See All API See All Microphone Sets See All Microphone Cartridges See All Acoustic Calibrators See All Special Microphones See All Microphone Pre-amplifiers See All Sound Sources See All Accessories for acoustic transducers See All Experimental testing See All Transducer Manufacturing (OEM) See All Accessories See All Non-rotating (calibration) See All Rotating See All CCLD (IEPE) accelerometers See All Charge Accelerometers See All Impulse hammers / impedance heads See All Cables See All Accessories See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management

[Please note that the following article — while it has been updated from our newsletter archives — may not reflect the latest software interface and plot graphics, but the original methodology and analysis steps remain applicable.]

Life data of a component, product or system can be separated into the following categories: complete data, right censored data, interval censored data, and left censored data. Each data type requires a modification to the analysis in order to correctly estimate the underlying lifetime distribution. A good life data analysis package, like ReliaSoft Weibull++, must be able to correctly handle all of these types of data. The characteristics of each data type are presented next.

Complete Data

Complete data, as shown in Figure 1, indicates that all of the units under the test failed and the time-to-failure for each unit is known. Therefore, complete information is known regarding the entire sample.

intervalcensored
Figure 1: Complete

Right Censored Data

Right censored data, also called suspended data, is composed of units that did not fail during the test as shown in Figure 2. For example, suppose that five units are put under test. Three units fail and their observed times-to-failure (in hours) are 65, 76, and 84. The last two units are still operating when the test is stopped at 85 and 100 hours respectively. Therefore, the last two units are considered to be suspended or right censored.

rightcensored
Figure 2: Right censored

Interval Censored Data

Another type of censored data, shown in Figure 3, is called interval censored data or inspection data. Interval censored data contains uncertainty as to when the units actually failed. For example, if five units under test are inspected every 100 hours, then the status of each unit (failed or still running) is known only at the time of each inspection. If a unit fails, it is known only that it failed between inspections and the exact time of failure is not known. Instead of an exact time-to-failure, an interval of time (e.g., between 100 and 200 hours) would be recorded.

intervalcensored
Figure 3: Interval censored

Left Censored Data

Left censored data is demonstrated in Figure 4. Left censored data is a special case of interval censored data in which the time-to-failure for a particular unit is known to occur between time zero and some inspection time. For example, if the inspection occurs at 100 hours, a failed unit could have failed at any time between 0 and 100 hours.

leftcensored
Figure 4: Left censored

Support Content