arrow_back_ios

Main Menu

See All Acoustic End-of-Line Test Systems See All DAQ and instruments See All Electroacoustics See All Software See All Transducers See All Vibration Testing Equipment See All Academy See All Resource Center See All Applications See All Industries See All Insights See All Services See All Support See All Our Business See All Our History See All Our Sustainability Commitment See All Global Presence
arrow_back_ios

Main Menu

See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All DAQ Systems See All High Precision and Calibration Systems See All Industrial electronics See All Power Analyser See All S&V Hand-held devices See All S&V Signal conditioner See All Test Solutions See All DAQ Software See All Drivers & API See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All Test Data Management See All Utility See All Vibration Control See All Acoustic See All Current / voltage See All Displacement See All Load Cells See All Pressure See All Strain Gauges See All Torque See All Vibration See All LDS Shaker Systems See All Power Amplifiers See All Vibration Controllers See All Accessories for Vibration Testing Equipment See All Training Courses See All Whitepapers See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Data Acquisition & Analysis See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Smart Sensors See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance See All Our People
arrow_back_ios

Main Menu

See All CANHEAD See All GenHS See All LAN-XI See All MGCplus See All Optical Interrogators See All QuantumX See All SomatXR See All Accessories See All Accessories See All BK Connect / Pulse See All API See All Microphone Sets See All Microphone Cartridges See All Acoustic Calibrators See All Special Microphones See All Microphone Pre-amplifiers See All Sound Sources See All Accessories for acoustic transducers See All Experimental testing See All Transducer Manufacturing (OEM) See All Accessories See All Non-rotating (calibration) See All Rotating See All CCLD (IEPE) accelerometers See All Charge Accelerometers See All Impulse hammers / impedance heads See All Cables See All Accessories See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management

Registration completed

Thank you for your registration.

Measuring the Parameters of a Transformer Equivalent Circuit Diagram

Used in many different applications, the transformer is one of the most important components in alternating current technology. It is used in electrical energy technology to transform between different voltage levels. To ensure efficient transmission of energy in this case, good efficiency and optimum utilization are required.


Despite the wide prevalence of power electronic circuits, the transformer is also still required for small power supplies to allow for the required galvanic isolation. It is used in measurement technology to convert measured quantities. Transformers must meet different requirements depending on the intended use. Adaptations to these requirements can be made through the selection of the core material that is used and by varying the geometry of the core. The individual properties of a transformer can be represented by a simple equivalent circuit diagram. This can be used to evaluate how suitable a transformer is for a proposed application and its behavior at various load points. In this article the equivalent circuit diagram of the transformer is first derived and explained. Next measurements and calculation methods for determining the equivalent circuit diagram and the loss of iron in the transformer core are presented. The measurements and calculations are performed with the HBM Gen3i data recorder. The appendix contains all the necessary formulas and they can be imported into Perception.

1. Equivalent circuit diagram of the transformer


Figure 1 shows the operating principle of a transformer with two windings that are magnetically connected with a ferrite core. Due to the high permeability of the ferrite core in comparison to the air, the flux is directed through it. Nonetheless, slight leakage fluxes  and  do occur. Resistances  and simulate the ohmic part of the windings. To describe the operating behavior of the transformer, an equivalent circuit diagram is derived from this model as shown in Figure 2. This diagram shows the transmission ratio between the primary and secondary side for an ideal transformer. The other effects that occur are represented by passive components. The magnetic fluxes are described by the leakage inductances  and, and also by the main inductance. The resistor is connected in parallel to the main inductance and serves to simulate the iron losses in the core material. These consist of eddy current losses and hysteresis losses.


null

null
Eddy current losses arise due to a current flow in the ferrite core which is caused by induced voltages. In accordance with Lenz's law, this current opposes the change that caused it. To minimize the current flow, the ferrite core is made up of plates that are isolated from each other. The hysteresis losses are caused by the periodic remagnetization of the ferrite core, since energy is required to align the molecular magnets in the iron (Weiss domains). Since both the main inductance Lµ and the iron loss resistance RFe are dependent on the core material with non-linear permeability µFe, both follow a non-linear course. R= R+ R2 ü²     (1)

L= L1σ + L ü²   (2) The leakage inductances may be considered as linear, since their field lines run primarily through the air, which exhibits constant permeability. For further considerations the equivalent circuit diagram from Figure 2 is simplified still further (Figure 3). The voltage drop on R1 and L is negligibly small in comparison to the voltage drop due to the iron loss resistance RFe and the main inductance Lµ in normal operation. This makes it possible to contact the iron loss resistance RFe and main inductance Lµ directly with the input terminals. [1] In equations (1) and (2) the ohmic resistance R2 and the leakage inductance L of the secondary side are converted to the primary side and combined to form RK and LK. The measurements and calculations performed below refer to the equivalent circuit diagram simplified in this manner. Quantities I'2, U'2 and Z' load have been converted from the secondary side to the primary side taking into consideration the transmission ratio.
null
null

2. Measurements in no-load


The values of the iron loss resistance RFe and main inductance Lµ can be determined by a no-load test as shown in Figure 4. Since these values exhibit non-linear behavior, the unloaded transformer is supplied with a variable transformer as a sinusoidal voltage source with variable amplitude. This makes it possible to approach and measure different load points with differently linked magnetic flux Ψ. The magnetic flux is calculated from the applied voltage as follows: Ψ = ∫▒ u ̂⋅ sin(2πft)dt     (3)
Ψ = -u ̂/2πf ⋅ cos(2πft)    (4) The metrologically acquired quantities are the primary voltage u1 (t), primary current i1 (t) and secondary voltage u2 (t). To determine the iron loss resistance RFe and main inductance Lµ, first the root mean square value of the primary voltage U1, the primary-side active power P1 and the reactive power Q1 are determined. The calculations are performed on a cyclical basis. The component values and transmission ratio ü can be calculated with formulas (5) (6) and (7). RFe = U12/P1                        (5)

Lµ = 1/(2 π f) ⋅ (U1²/Q1)    (6)

ü = U1/U2                             (7) As can be seen in Figure 5, the component values are not constant due to dependence on the magnetic flux. The calculated component values are an average over a sine wave.
null
null
The measured values are examined over the course of time to allow for further examination. The distortion of the current over time (red curve) is clearly seen in Figure 6. The core material runs into saturation. The correlation between the flux density B and the magnetic field strength H is illustrated most vividly by the hysteresis curve. If the core geometry is known, the flux density and field strength can be determined from the measured quantities with: B = Ψ/AFe        (8) H = I/lFe          (9) Due to the unknown core geometry of the test specimen measured here, the hysteresis curve is realized in Figure 7 as a ΨI characteristic curve. The new curve and a number of load points are also shown in Figure 8. The new curve is determined by approaching different load points in which the linked flux and current are acquired in the voltage zero crossing. It is produced when a field strength is first applied to an unmagnetized core and is the characteristic curve of the main inductance Lµ. The flux density increases slowly at first. As the field strength increases, the flux density increases faster and faster until the core goes into saturation and the flux density hardly rises at all. Now if the field strength is reduced, the flux density does not return on the new curve. Instead it follows the hysteresis curve. When the field strength is equal to zero a residual magnetism remains, referred to as remanence. The field strength required to eliminate the residual magnetism is called the coercive field strength. [2]


null

Another method for determining the expected iron losses is the Steinmetz formula (10). PFe = k ⋅ f⋅ Ψ          (10) The Steinmetz formula is based on the fact that the surface enclosed by the hysteresis curve is equal to the iron losses. The precondition for applying the Steinmetz formula is a sinusoidal input voltage. The iron losses for differently linked flux calculated from the measured values can be used to determine the unknown coefficients a and b from formula (10) by curve fitting (Figure 9). The curve produced in this manner can then be used to estimate iron losses for other load points in advance.

3. Measurements in the short circuit


In the short-circuit test the secondary side is short-circuited by a low-ohm impedance Zload (Figure 11). The current is set to the nominal (rated) current by a variable transformer.
null
null
null
null
The current through the main inductance and iron loss resistance is negligible in this operating state. The quantities acquired metrologically are the primary voltage u1 (t), primary current i1 (t), secondary current i2 (t) and the voltage u2 (t) over the load. First the voltage drop is calculated with RK and LK. uK (t) = u1 (t) - ((u2 (t))/ü)         (11) Then uK (t) and i'2 (t) can be used to calculate the power transformed on RK and LK and the component values can be calculated. R= P/ I'22     (12)
L= 1/2π f ⋅ (Q/ I'2²)    (13)

4. Sources

[1]  J. Teigelkötter, Energieeffiziente elektrische Antriebe, Springer Vieweg Verlag, 2013. [2]  M. S. Hering, Physik für Ingenieure (9.Auflage), Berlin, Heidelberg, New York: Springer, 2004.

Related Products and Content