Sales Specialist OEM Sensors Central Europe
Working as a sales engineer with customers all around the globe, Max has years of experience in various sectors including automation, robotics, and the medical industry. In 2020, Max joined HBK and is now part of the OEM Custom Sensor team, supporting OEM clients with their challenges.
AGV/AMR technology has been successfully adopted across a variety of sectors. Industries like manufacturing, warehousing, and logistics are really taking advantage of these robots to streamline their operations. In manufacturing, for example, AGVs are being used to move materials around the factory floor, optimising production processes and reducing manual labour.
In the e-commerce world, companies are using AMRs to speed up order fulfillment in their warehouses. These robots are pretty cool because they can navigate through the aisles, pick up items, and deliver them to packing stations, all autonomously.
Healthcare is another sector where AGV/AMRs are making a big impact. Hospitals are using them to transport supplies and medication between different departments, helping to improve efficiency and free up staff to focus on patient care.
Even in agriculture, we’re seeing AGV/AMRs being used for tasks like crop harvesting and spraying. It’s fascinating to see how technology is transforming traditional industries like farming. Overall, it’s an exciting time to be an engineer working with AGV/AMR technology. There are so many opportunities to innovate and make a real difference across a wide range of sectors.
When developing AGV/AMR systems, integrating sensors poses one of the major challenges for product engineers. These automated systems rely heavily on accurate and reliable sensors to perceive their environment and navigate safely. However, effectively integrating these sensors goes beyond simply installing them on the robot’s chassis. It’s more about carefully merging overall design and specific functionalities of the AGV/AMR.
The main challenge lies in finding a delicate balance between the diversity of data captured by the sensors and their compatibility with the mechanical and electronic constraints of the robots. This requires creating solutions that not only ensure precise environmental perception but also seamlessly integrate with other system components.
Among the specific challenges encountered in designing sensors for AGV/AMR are the need to accurately detect human presence and obstacles while maintaining reliable and durable operation despite vibration and environmental constraints. Additionally, it’s crucial to ensure that these solutions remain economically viable while delivering optimal performance.
Furthermore, it’s essential to consider the requirements for regular maintenance and ensure the robustness of the sensors to maintain consistent performance in a variety of operational environments, sometimes challenging ones. In conclusion, successful integration of sensors into AGV/AMR systems requires a holistic approach and in-depth expertise to effectively address these multiple challenges.
In AGV and AMR applications, a variety of sensors are employed to fulfill their functionalities, including lidars (light detection and ranging), laser scanners, cameras, proximity sensors, and load sensors. The choice of sensors varies depending on the specific needs and requirements of robots in different operational contexts.
In the logistics domain, lidars and laser scanners are pivotal for mapping warehouses and detecting obstacles, enabling robots to navigate autonomously in complex and dynamic environments. Cameras play a crucial role in object recognition and precise localisation of goods, facilitating efficient handling of items and contributing to the optimisation of logistics operations.
Proximity sensors are indispensable for detecting obstacles in the path of robots, thereby avoiding collisions and ensuring safe navigation, particularly in confined spaces where precision is paramount.
Moreover, load sensors, although often overlooked, play a vital role in controlling the manipulation of loads by robots. They accurately measure the force exerted during grasping, transporting, and depositing goods, ensuring efficient and secure handling. These sensors optimise logistics operations by enabling AGVs and AMRs to interact intelligently and autonomously, especially in functions such as load distribution monitoring, weight measurement and picking, drive control, and optimised navigation.
Discover how to enhance efficiency and safety in Autonomous Guided Vehicles (AGVs) and Autonomous Mobile Robots (AMRs) with our comprehensive whitepaper on Advanced Sensor Technology.
In our experience, designing custom load sensors based on strain gauges for AGV and AMR applications presents several common challenges, particularly in optimising space, managing multiple loads, and ensuring compatibility with the specific mechanical constraints of the robots. These challenges demand innovative approaches to ensure reliable performance and successful sensor integration in dynamic environments. Here’s how we tackle these challenges:
Furthermore, we offer tailored solutions to address the specific needs of each application:
Finite Element Analysis (FEA) is a crucial asset in optimising the design of sensors for AGV/AMR robots. By utilising this advanced simulation technique, we can model the structural behaviour of sensors in a variety of operational conditions.
FEA allows us to virtually explore sensor performance under different loads, vibrations, and environments, revealing excessive stresses, potential deformations, and potential points of failure. This ability to simulate sensor behaviour provides valuable insights into its performance in real-world scenarios.
By identifying stress zones and weak points through FEA, we can iterate quickly on designs, testing different configurations and materials to enhance sensor robustness and durability. This approach enables us to optimise the design even before creating a physical prototype, resulting in time and cost savings in development.
By adjusting the sensor design based on FEA results, we can enhance its resistance to mechanical and environmental stresses, ensuring reliability and accuracy in various operational conditions. This contributes to improving the quality and safety of AGV/AMR robot operations.
In conclusion, FEA is an essential tool for optimising sensor design for AGV/AMR robots. Through this approach, we can detect and address potential issues early in the design process, leading to sensors that are more efficient, reliable, and perfectly suited to the specific requirements of these advanced robotic applications.
We take immense pride in serving as your reliable partner for customised sensor solutions. Through close collaboration, we empower our clients to optimise their development and testing processes, attain highly precise results, and maintain a competitive edge in their respective industries.
When it comes to designing sensors tailored for AGV/AMR robots, the specifications outlined in the requirements document are pivotal for ensuring optimal performance and seamless integration within robotic systems. Here are the key specifications typically highlighted:
In summary, the requirements document for sensors tailored to AGV/AMR outlines a set of critical specifications necessary to meet the demands of load, precision, durability, and environmental compatibility within the industrial robotic usage context.
Let me walk you through the innovation journey involved in crafting custom OEM sensors for AGV and AMR, from inception to full-scale production, and how our close partnership with clients ensures the seamless realisation of bespoke sensor solutions.
This will bring together HBM, Brüel & Kjær, nCode, ReliaSoft, and Discom brands, helping you innovate faster for a cleaner, healthier, and more productive world.
This will bring together HBM, Brüel & Kjær, nCode, ReliaSoft, and Discom brands, helping you innovate faster for a cleaner, healthier, and more productive world.
This will bring together HBM, Brüel & Kjær, nCode, ReliaSoft, and Discom brands, helping you innovate faster for a cleaner, healthier, and more productive world.
This will bring together HBM, Brüel & Kjær, nCode, ReliaSoft, and Discom brands, helping you innovate faster for a cleaner, healthier, and more productive world.
This will bring together HBM, Brüel & Kjær, nCode, ReliaSoft, and Discom brands, helping you innovate faster for a cleaner, healthier, and more productive world.