arrow_back_ios

Main Menu

See All Acoustic End-of-Line Test Systems See All DAQ and instruments See All Electroacoustics See All Software See All Transducers See All Vibration Testing Equipment See All Academy See All Resource Center See All Applications See All Industries See All Insights See All Services See All Support See All Our Business See All Our History See All Our Sustainability Commitment See All Global Presence
arrow_back_ios

Main Menu

See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All DAQ Systems See All High Precision and Calibration Systems See All Industrial electronics See All Power Analyser See All S&V Hand-held devices See All S&V Signal conditioner See All Test Solutions See All DAQ Software See All Drivers & API See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All Test Data Management See All Utility See All Vibration Control See All Acoustic See All Current / voltage See All Displacement See All Load Cells See All Pressure See All Strain Gauges See All Torque See All Vibration See All LDS Shaker Systems See All Power Amplifiers See All Vibration Controllers See All Accessories for Vibration Testing Equipment See All Training Courses See All Whitepapers See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Data Acquisition & Analysis See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Smart Sensors See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance See All Our People
arrow_back_ios

Main Menu

See All CANHEAD See All GenHS See All LAN-XI See All MGCplus See All Optical Interrogators See All QuantumX See All SomatXR See All Accessories See All Accessories See All BK Connect / Pulse See All API See All Microphone Sets See All Microphone Cartridges See All Acoustic Calibrators See All Special Microphones See All Microphone Pre-amplifiers See All Sound Sources See All Accessories for acoustic transducers See All Experimental testing See All Transducer Manufacturing (OEM) See All Accessories See All Non-rotating (calibration) See All Rotating See All CCLD (IEPE) accelerometers See All Charge Accelerometers See All Impulse hammers / impedance heads See All Cables See All Accessories See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management

Multiple Vehicle Pass-by Tests

Engineers can assess noise from many vehicles at the same time with data acquisition synchronized by GPS.

Multiple vehicle types from diverse development teams
Multiple vehicle types from diverse development teams can use the same system, on the same track, on the same day.

There are ways of reducing it, but there’s no avoiding it: to measure operational noise on vehicles, they need to run on a track. But tracks just keep getting busier. And with new ASEP test provisions and progressively tighter noise regulations on the way, this trend looks like it’s locked in. So what if we could test multiple vehicles at the same time? That’s the ambition behind Brüel & Kjær’s new system, which allows different vehicles to be easily and simultaneously tested with the same trackside setup.

This system is actually composed of two setups: the stationary trackside acquisition setup and the vehicle-borne acquisition setup. The first component is essentially like any ordinary pass-by noise system, with a line of individual microphones past which the vehicle travels, and a data acquisition and analysis capability. But where the overall system departs from tried and tested techniques is the GPS-based time synchronization embedded in the data acquisition.

The GPS synchronisation capability allows the other component of the system – the vehicle-borne data acquisition – to acquire sound data from the trackside acquisition setup that is perfectly matched to its own data. Each vehicle’s individual acquisition setup is the master of the data for that specific vehicle, and since many different vehicles can carry these, they can all use the same trackside setup on the same day, whenever there is an available time slot.

Once a test run is over, the vehicle-borne setup automatically interrogates the trackside setup via WLAN connection. The trackside setup then sends the relevant data automatically to the vehicle, where the incoming data is merged with its own data (measured on the car itself) – also automatically. This vehicle data is normally RPM and speed, and can also include sound or vibration data when on-board transducers are used to diagnose causes of excessive noise. The two datasets are merged with perfect accuracy, and the vehicle-borne setup calculates the pass-by result according to whichever standard is being used.

"Critically for a WLAN-based system, this one is robust because it is not dependent on continuous connectivity – or even consistent connectivity. So it can cope easily with Wi-Fi dropouts caused by trees around the track, reflections from buildings, or sheer distance."

Critically for a WLAN-based system, this one is robust because it is not dependent on continuous connectivity – or even consistent connectivity. So it can cope easily with Wi-Fi dropouts caused by trees around the track, reflections from buildings, or sheer distance. Both trackside and vehicle-borne setups record data independently, and use a GPS timestamp on their respective datasets, so the relevant, corresponding time periods are perfectly synchronized later. The system will normally perform this immediately so the driver can see results in the vehicle, but when that is not possible for connectivity reasons it can simply do it later, when the connection is re-established. LAN cables can even be used, doing away with WLAN entirely. So even if there are problems with WLAN, engineers can begin their testing regardless, confident they will get results.

The multi-vehicle pass-by system supports current ISO standards
The multi-vehicle pass-by system supports current ISO standards, and is ready for all future additional regulations, including ASEP.

Because the data synchronization between the ground and vehicle setups is automatic, testers can make multiple runs with multiple vehicles, in a random order, without the need for laboriously sorting out data. Rigid test schedules can become a thing of the past, as several vehicles tested to different standards can run in whatever order is required on the ground. Productivity therefore increases, while the many unpredictable contingencies on the track – like vehicles needing attention – are thus easy to accommodate. This also maximizes the use of the track, keeping it as busy as possible.

A test can be initiated when the driver guides her vehicle past a photocell sensor, which triggers the GPS time-stamped recordings simultaneously on both datasets: the vehicle setup’s data and the trackside setup’s data. To assist the driver, the vehicle-borne setup includes a PC with large buttons and an easy-to-use interface that is optimized for single-person use. Large and clear on-screen readouts for speed and RPM help the driver to hold the necessary entry speed target, so a single person can refine their approaches. Ambient sound pressure level and weather station parameters are also displayed in the vehicle, helping the driver select good test conditions. The software is matched to the workflow of different standards, helping the driver work back from her previous exit speed to calculate a new target entry speed. This feature helps reduce the amount of consecutive runs needed to achieve the required conditions. 

LEARN MORE
LAN-XI DAQ

 

The vehicle’s acquisition setup controls the test and gathers the data, and after a run is complete, it gathers the trackside data and merges it with its own. This process takes seconds, after which the result is also calculated in seconds. Subsequently, the driver can see the result from her seat, and be sure she has successfully captured the data. She can also see whether the result is achieved, or the test needs redoing. With two-wheelers, a compact telemetry system transmits all data to the LAN-XI-based trackside setup.

 

The GPS-enabled data acquisition hardware, LAN-XI
The GPS-enabled data acquisition hardware, LAN-XI, is tough and modular, creating systems from a few channels up to hundreds.

Brüel & Kjær’s LAN-XI data acquisition hardware is highly flexible due to its modularity. The individual modules can be collected, distributed or repurposed at will, allowing diverse parts of an organisation to each use some modules, and then combine them whenever necessary. The new GPS capability gives a highly accurate time signal, so modules can be distributed far and wide, and still achieve perfect sample synchronicity. This opens up a world of possibilities such as cross-spectral analysis, where data measured by accelerometers or microphones on the vehicle can be matched to the external acoustic information perceived by trackside microphones.