arrow_back_ios

Main Menu

See All Acoustic End-of-Line Test Systems See All DAQ and instruments See All Electroacoustics See All Software See All Transducers See All Vibration Testing Equipment See All Academy See All Resource Center See All Applications See All Industries See All Insights See All Services See All Support See All Our Business See All Our History See All Our Sustainability Commitment See All Global Presence
arrow_back_ios

Main Menu

See All Actuators See All Combustion Engines See All Durability See All eDrive See All Transmission & Gearboxes See All Turbo Charger See All DAQ Systems See All High Precision and Calibration Systems See All Industrial electronics See All Power Analyser See All S&V Hand-held devices See All S&V Signal conditioner See All Accessories See All DAQ Software See All Drivers & API See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All Test Data Management See All Utility See All Vibration Control See All Acoustic See All Current / voltage See All Displacement See All Load Cells See All Pressure See All Strain Gauges See All Torque See All Vibration See All LDS Shaker Systems See All Power Amplifiers See All Vibration Controllers See All Accessories for Vibration Testing Equipment See All Training Courses See All Whitepapers See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Data Acquisition & Analysis See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Smart Sensors See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance See All Our People
arrow_back_ios

Main Menu

See All CANHEAD See All GenHS See All LAN-XI See All MGCplus See All Optical Interrogators See All QuantumX See All SomatXR See All Fusion-LN See All Accessories See All Hand-held Software See All Accessories See All BK Connect / Pulse See All API See All Microphone Sets See All Microphone Cartridges See All Acoustic Calibrators See All Special Microphones See All Microphone Pre-amplifiers See All Sound Sources See All Accessories for acoustic transducers See All Experimental testing See All Transducer Manufacturing (OEM) See All Accessories See All Non-rotating (calibration) See All Rotating See All CCLD (IEPE) accelerometers See All Charge Accelerometers See All Impulse hammers / impedance heads See All Cables See All Accessories See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Process Weighing See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management

Cummins helps ensure generator set reliability with nCode GlyphWorks test data analysis software

Cummins, usa

Introduction

Cummins Power Generation is a world leader in the design and manufacture of diesel engine generator sets, spark-ignited natural gas and propane engine generators and lean-burn gas engine generators. All of these products must withstand continual loading in operation and transport while delivering complete reliability to a wide range of critical applications. Cummins engineers utilize static testing, load frame testing, shaker table testing, road testing, etc. to understand fatigue requirements. nCode GlyphWorks test data analysis software plays a critical role by providing the analysis tools needed to make design decisions from large volumes of measured data.

chevron_left
chevron_right

Solution requirements

  • Provide the answers to critical questions such as how long a particular component or subassembly will last under a specified set of conditions.
  • Eliminate internal development costs of maintaining in-house analysis software.

Cummins Power Generation selected GlyphWorks engineering test data analysis software because of its wide range of data processing capabilities including specialized options such as fatigue analysis, accelerated testing, and frequency domain tools. GlyphWorks also integrates with DesignLife to enable test and CAE fatigue in one environment. The software provides a wide range of functions for time, frequency, and statistical analysis, plus synchronized global positioning system (GPS) and video displays. GlyphWorks provides a graphical, process-oriented environment that enables users to create an analysis workflow by dragging and dropping analysis building blocks.

Generator set chassis testing

Cummins Power Generation engineers also perform strain gauge testing of the skids that the generator sets are mounted on. They locate strain gauges at high stress locations based on FEA results and then use GlyphWorks to convert the results to the frequency domain to understand the dynamic behavior of the skid. Strain data is then used in evaluating the fatigue life of the skids or bed frames using strain life/stress life glyphs.

They use GlyphWorks curve-fitting tools to determine the stiffness of the spring/rubber vibration mounts. Similar tools are used in evaluating bolted joints - like evaluating the nut factor. This information is used in turn in simulations to diagnose design issues and optimize the product design.

Cummins

Cummins Inc., a global power leader, is a corporation of complementary business units that design, manufacture, distribute and service engines and related technologies, including fuel systems, controls, air handling, filtration, emission solutions and electrical power generation systems.

Headquartered in Columbus, Indiana (USA), Cummins employs approximately 44,000 people worldwide and serves customers in approximately 190 countries and territories through a network of more than 600 company-owned and independent distributor locations and approximately 6,500 dealer locations.

About Cummins

Further information

Ensuring that it will provide its promised life without failure is important for any product. But fatigue life is particularly critical in the power generation industry where hospitals, telecommunications firms, data centers, emergency services, military units and others rely upon generator sets to carry out their mission in the absence of grid power. Physical testing has played a critical role in the product development process at Cummins Power Generation ever since the company began making generator sets. “Testing generators sets involves huge volumes of data,” Maheshwari said. “The challenge is processing that data to provide the answers to critical questions such as how long a particular component or subassembly will last under a specified set of conditions.”


In the past, the company wrote data analysis routines in a proprietary development environment. The advantage of this approach is that the software could be customized to address the company’s individual requirements. On the other hand, even though the company devoted considerable scarce resources to software development time, it could not duplicate the functionality of leading edge test data analysis software. A few years ago, Cummins Power Generation evaluated all of the leading test data analysis software with the idea of eliminating internal development costs while taking advantage of the much greater capabilities that can be provided by a company whose development costs are spread across sales to many customers.

Cummins Power Generation selected GlyphWorks engineering test data analysis software because of its wide range of data processing capabilities including specialized options such as fatigue analysis, accelerated testing, and frequency domain tools. GlyphWorks also integrates with DesignLife to enable test and CAE fatigue in one environment. The software provides a wide range of functions for time, frequency, and statistical analysis, plus synchronized global positioning system (GPS) and video displays. GlyphWorks provides a graphical, process-oriented environment that enables users to create an analysis workflow by dragging and dropping analysis building blocks.

The implementation of this software has helped Cummins Power Generation engineers increase their ability to process test data, resulting in faster and better decisions. As an example, radiator fans are one of the many components whose fatigue life must be carefully assessed. Before testing gets underway, finite element analysis (FEA) is normally used to identify high stress locations. These areas are instrumented with strain gauges. The fan is then spun at its rated speed as well as through startup and shutdown cycles while a slip ring is used to connect the strain gauges to a SoMat eDAQ data acquisition system. A single fan typically generates about 4 gigabytes of acceleration, strain and temperature data, as well as speed and air pressure data.

Cummins Power Generation engineers typically start by using the GlyphWorks drift detection tool to make sure that strains are not drifting due to glue weakening or other causes. The GlyphWorks crest factor tool is used to clean up large spikes in the data and the Butterworth filter is used to clean up smaller spikes. Next they might produce a frequency spectrum view of their data to look for resonances and check the noise floor for signal to noise ratio. Once the data integrity is verified, dynamic strain data is used to access the dynamics of structure using frequency spectrums and waterfall analysis with the order tracking method of rotating machinery. The data is further used for fatigue analysis using strain life and/or stress life glyphs which gives an indication of the fatigue life of radiator cooling fans in the application.

In addressing a resonance issue, one option is to change the fan speed to move it away from a resonant frequency. The GlyphWorks order filtering tool is sometimes used to determine how much of a speed change is needed and to determine which excitation orders could be changed/altered to avoid this resonance excitation. Another option is to make a design change, such as increasing the thickness of the hub to make it stiffer with an idea that this would change the natural frequency of the fan and could avoid potential resonance issues in applications. If the fatigue life does not meet requirements, then engineers evaluate various methods of making improvements.

Cummins Power Generation engineers also use GlyphWorks to create accelerated life profiles that are used to produce load histories for shaker tables that simulate the effect of transporting generator sets and also generator sets that are used in mobile applications. Engineers install instruments such as accelerometers and strain gauges on the generator sets and vehicles used to transport them. They also capture GPS data and record live video during road testing using portable data acquisition systems like SoMat eDAQ 

Engineers import the data into GlyphWorks and use the amplitude distribution tool to look at the load pattern, for example, to determine if it is random or Gaussian. Various running statistics such as maximum, minimum, mean, root mean square and standard deviation are used to evaluate the data. At the same time, engineers view the data linked with the GPS so they know exactly where the vehicle was traveling – on dirt roads, gravel roads, washboards, etc. – when specific events occurred. The media display tool is used to shows live video keyed to the data so that engineers can see the precise conditions that caused each spike.

The next step is to condense the data so its effects can be duplicated on the shaker table in a fraction of the time required to perform the road tests. Cummins Power Generation engineers use the GlyphWorks extreme response and shock response tools to generate a profile that will create the same fatigue loads that the generator set experienced in the field. Then they put the generator set on the shaker table, run that profile and look for failures. Strain gauges are attached to individual components and the data generated by these devices is input to the strain life tool to predict fatigue life.



Technology Used

Related Case Studies

No more result to load