HBK strain gauges and data acquisition equipment were used in a unique experiment performed in the Westermeerwind wind farm in the Netherlands to investigate the damping effect of the sea bed on the loads on wind turbines.
In order to make wind energy more attractive than fossil power and also as a result of the effects of competition, providers are searching for new ways of supplying the required megawatts in as economical a way as possible when constructing offshore wind farms. Many technical innovations in the areas of masts, turbines, and rotors have therefore been introduced in recent years to achieve this. Siemens Windpower has started a project to gain more insight into the interaction between the sea bed and the wind turbine foundations
Siemens Windpower is a new company that has been an independent part of Siemens AG since 1 January, 2017, combining a number of existing Siemens divisions and acquisitions that deal with wind energy. Siemens Windpower B.V. in the Netherlands has grown, in the meantime, into an organization with around 120 staff. It maintains existing wind farms and also takes care of the engineering and project management for constructing new wind farms.
Thanks to its collaboration with the TU Delft, Siemens Windpower in the Netherlands has gradually evolved into a Centre of Competence for the development and construction of wind turbines. The emphasis is on calculating loads and designing the masts and foundations. Research into developing and manufacturing the turbines is carried out mainly by the company’s Danish branches..
We are very pleased that we’ve had the opportunity to perform this experiment, All the parties involved have set aside their own interests despite the time pressure, the cost, and the risks, which is really commendable. The results of the investigation, which scientists will use as their theses this year, can be of great benefit to the development of wind farms in the future. We want to use all these data to develop a design model that can be certified by DNV-GL and, thereby, become a sort of standard or reference for designing offshore wind turbines.