arrow_back_ios

Main Menu

See All Acoustic End-of-Line Test Systems See All DAQ and instruments See All Electroacoustics See All Software See All Transducers See All Vibration Testing Equipment See All Academy See All Resource Center See All Applications See All Industries See All Insights See All Services See All Support See All Our Business See All Our History See All Our Sustainability Commitment See All Global Presence
arrow_back_ios

Main Menu

See All Actuators See All Combustion Engines See All Durability See All eDrive See All Transmission & Gearboxes See All Turbo Charger See All DAQ Systems See All High Precision and Calibration Systems See All Industrial electronics See All Power Analyser See All S&V Hand-held devices See All S&V Signal conditioner See All Accessories See All DAQ Software See All Drivers & API See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All Test Data Management See All Utility See All Vibration Control See All Acoustic See All Current / voltage See All Displacement See All Load Cells See All Pressure See All Strain Gauges See All Torque See All Vibration See All LDS Shaker Systems See All Power Amplifiers See All Vibration Controllers See All Accessories for Vibration Testing Equipment See All Training Courses See All Whitepapers See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Data Acquisition & Analysis See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Smart Sensors See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance See All Our People
arrow_back_ios

Main Menu

See All CANHEAD See All GenHS See All LAN-XI See All MGCplus See All Optical Interrogators See All QuantumX See All SomatXR See All Fusion-LN See All Accessories See All Hand-held Software See All Accessories See All BK Connect / Pulse See All API See All Microphone Sets See All Microphone Cartridges See All Acoustic Calibrators See All Special Microphones See All Microphone Pre-amplifiers See All Sound Sources See All Accessories for acoustic transducers See All Experimental testing See All Transducer Manufacturing (OEM) See All Accessories See All Non-rotating (calibration) See All Rotating See All CCLD (IEPE) accelerometers See All Charge Accelerometers See All Impulse hammers / impedance heads See All Cables See All Accessories See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Process Weighing See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management

Advanced Agriculture Sensor Technology at HBK

Manufacturers of agricultural machinery are incorporating an increasing amount of advanced sensor technology in their precision farming equipment. Our custom sensors sensors are leading the innovation forefront with state-of-the-art strain gage sensors and electronics for all types of agriculture equipment. 

Sensors for tractors and machinery can include downforce sensors, custom torque and force sensing, harvest yield baler sensors, draft load pins, wheel force and soil compactions sensors and many more.

Types of Sensors used in Agriculture

Here are some common types of agriculture sensors used in modern farming:
 

  • Soil Moisture Sensors: Measure the water content in soil to optimize irrigation and ensure crops receive the right amount of water.
  • Temperature Sensors: Monitor ambient and soil temperatures to help manage planting schedules and protect crops from extreme weather.
  • pH Sensors: Provide data on soil acidity or alkalinity, which is crucial for nutrient availability and crop health.
  • Location Sensors (GPS): Track the position of machinery and equipment, and help in mapping fields and optimizing planting patterns.
  • Optical Sensors: Use light to measure soil properties and crop health, helping in precision farming.
  • Electrochemical Sensors: Detect soil nutrient levels and chemical composition, aiding in fertilizer management.
  • Airflow Sensors: Measure wind speed and direction, which can impact spraying and other field operations.
  • Yield Monitoring Sensors: Track the amount of crop harvested, providing data for yield analysis and future planning.

The Challenge

“By 2050 we will need to produce 60 per cent more food (than 2012) to feed a world population of 9.3 billion” wrote José Graziano Da Silva, Director-General of the Food and Agriculture Organization of the United Nations. [SOURCE: https://www.un.org/en/chronicle/article/feeding-world-sustainably]


Earlier methods of increasing food output have certainly been successful: cereal crop production, for example, doubled between 1960 and 2000. But the methods chosen during that time were not sustainable. “Collateral damage includes land degradation and deforestation, over-extraction of groundwater, emission of greenhouse gases, loss of biodiversity, and nitrate pollution of water bodies” notes the Food and Agriculture Organization (FAO).


The challenge therefore is to find sustainable ways to increase agricultural production by using techniques that are more in tune with ecosystems and minimizing the use of external inputs such as fertilizers or pesticides.

chevron_left
chevron_right

The first wave of innovation in precision farming put more information into the tractor cab, so that the driver could operate tools – such as plough, fertiliser, seeder, pesticide spreader and harvester – more effectively.

The second wave of innovation focussed on creating feedback loops between the automated tools so that the tractor operator’s role was simpler and they could focus their attention on a  small number of really significant decisions. In the background, the automated systems constantly gather data to provide new insights and improve decision making.

In the third wave of precision agriculture, the operator no longer has to spend their day in the cab. In fact, in some autonomous vehicles already on the market, there may no longer even be a cab where the operator can sit. This stage of evolution is a major game-changer. Instead of being a limiting resource, the skilled agricultural worker now becomes an economic multiplier, capable of managing multiple automated agricultural robots simultaneously.

Future developments in precision agriculture will see increased use of autonomous farm vehicles.- This will be accompanied by improved wireless data transmission and data acquisition from smarter, smaller Unmanned Aerial and Unmanned Ground Vehicles (UAVs and UGVs, respectively). In addition to monitoring crop and soil conditions, these smaller vehicles also monitor the status of farm equipment, allowing farmers to improve machine servicing and maintenance cycles for improved uptime.

Remote management of agricultural activities, through automation using wireless sensors and the Internet of Things, is the new horizon in agriculture. But it is not reserved for the wealthy economies, or the biggest agribusinesses. Technology and ideas will permeate and spread through an industry, as water soaks through soil.

The initial waves of technology were produced by the major manufacturers who had the R&D resources to experiment, and the vision to create new approaches, aimed at the large-scale farms who could afford to invest in them. But the future of precision agriculture will undoubtedly shared with others: with high-volume manufacturers who develop smart solutions to serve global niches; and with a huge number of small and innovative manufacturers, who create smaller devices, at lower prices points, that address the needs of the smaller farmer. In the developing world, reports the FAO, there are roughly 500 million small farms producing more than 80 percent of the world’s food. That’s a market too big for entrepreneurs and innovators to ignore.

A woman farmer with digital tablet controls an autonomous tractor on a smart farm

Precision agriculture is one of the methods that enables farmers to meet the increasing worldwide demand for food. It uses sensing technologies to gather actionable data from multiple sources. Analysing the data and applying the insights gained means farmers can adapt to environmental conditions and use resources more efficiently.

Data on inputs (seed, fertilisers, pesticides, fuel and energy, water, etc.) can be combined with accurate GPS location, climate or weather data to deliver actionable insights for effective decison-making. Combining these analyses with, and comparing them to, data about outputs (yields, harvest quality, market price), enables farmers to think in greater detail, and act at a significantly higher level of efficiency and effectiveness.

In addition to optimizing yields, precision agriculture also enables farmers to minimize negative environmental effects:

  • reduce carbon dioxide emissions through improvements in fuel and energy efficiency,
  • reduce nitrous oxide released from soil by optimizing the use of nitrogen fertilizers,
  • reduce the use of chemical fertilizer and pesticides by pinpoint application,
  • eliminate nutrient depletion by monitoring and managing soil health,
  • control soil compaction by minimizing equipment traffic,
  • maximize the efficient use of water.

In practice, precision farming requires a combination of machinery equipped with sensors; a data collection infrastructure; and processing equipment to make sense of it all. Hardly surprising then, that the first to adopt these technologies were agribusinesses with sufficient capital available to invest. The large-scale farms that invested early in precision farming have seen handsome paybacks in terms of crop yields.

As the technologies become more widespread, they become more affordable. Smaller farms are now able to benefit from precision farming as well, using tools built into smart phones, relevant applications, and smaller-sized machinery. What’s more, these technologies are contributing to solutions that extend beyond farms, including pollution, global warming, and conservation.

oem sensors - key-visual-3D-artwork_isolated

Related Pages

 


Need Help? We’re Here for You!


Whether you have questions, need more information, or are ready to start working with us, we're here to help. Our team is dedicated to providing you with the best service and personalized solutions that meet your needs. Don’t hesitate to reach out – we’re just a click away!

Contact us today, and let's explore how we can make things happen for you. We look forward to connecting soon!

Lady cut out reading a newsletter on tablet