arrow_back_ios

Main Menu

See All Simulação e Análise See All DAQ See All Drivers API See All Utilitário See All Controle de vibração See All Calibração See All DAQ See All Portátil See All Industrial See All Analisadores de potência See All Condicionadores de sinal See All Acústica See All Tensão e Corrente See All Deslocamento See All Força See All Células de carga See All Multicomponente See All Pressão See All Deformação See All Strain Gauges See All Temperatura See All Inclinação See All Torque See All Vibração See All Acessórios See All Controladores See All Excitadores de medição See All Excitadores modais See All Amplificadores de potência See All Sistemas Shaker See All Soluções de teste See All Atuadores See All Motores de combustão See All Durabilidade See All eDrive See All Sensores de teste de produção See All Caixas de transmissão See All Turbo Charger See All Cursos de formação See All Acústica See All Monitorização de activos e processos See All Energia eléctrica See All Sensores personalizados See All NVH See All Sensores personalizados do OEM See All Vibração See All Integridade estrutural See All Transporte automotivo e terrestre
arrow_back_ios

Main Menu

See All nCode - Análise de Durabilidade e Fadiga See All ReliaSoft - Análise e gerenciamento de confiabilidade See All API See All Ruído do produto See All Ruído de passagem de veículos See All Electroacoustics See All Identificação da fonte de ruído See All Ruído ambiental See All O que é potência sonora e pressão sonora See All Certificação de ruído See All Teste de produção e garantia de qualidade See All Análise e Diagnóstico de Máquinas See All Monitoramento de integridade estrutural See All Teste de bateria See All Introdução à Medição de Energia Elétrica Durante Transitórios See All Diagrama de circuito equivalente do transformador | HBM See All Sensores OEM para a indústria agrícola See All Sensores OEM para aplicações robóticas e de torque See All Dinâmica estrutural See All Ensaio das propriedades dos materiais

Reliability Analysis of a Storage Cluster System

This example is based on the example shown in Figure 8 of the article "Determining the Availability and Reliability of Storage Configurations" by Santosh Shetty, August 2002, as posted on Dell's website.

Example

 

Consider a "high-availability" cluster with a reliability block diagram (RBD), as shown next.

Figure 1: Storage Cluster System

Assume the following life distributions and parameters for the components: (Note that this example, unlike the original article, assumes no repair of failed components.)

 

  • Server: Exponential with mean = 45,753 hours
  • Switch: Exponential with mean = 255,358 hours
  • HBA: Exponential with mean = 252,550 hours
  • Controller: Exponential with mean = 68,961 hours

 

The objective of the analysis is to study the reliability of the system.

Analysis

 

Step 1: Create the RBD of the system in BlockSim, and then use the given information to configure the universal reliability definitions (URDs) of each block. For example, the following picture shows the Block Properties window of Server1. The inset shows the Model Wizard, which allows you to define the failure model of the block. The URDs of the other blocks can be configured in a similar manner.

Figure 2: Block Properties Window of Server1 and Model Wizard (inset)

Step 2: Once the URDs have been configured, analyze the diagram and obtain the system reliability equation of the system, as shown next. In this equation, each R is the reliability (1-cdf) function of the item. As an example, RServer2 is the reliability function of Server 2.

Figure 3: System Reliability Equation of the Storage Cluster System

Step 3: Generate system level plots to see more information about the system. The next two charts are component reliability importance plots at t = 8544 hr. Both plots (a tableau area plot and a bar chart) illustrate the same concept; that is, the higher the importance of the component, the higher its effect on system reliability.

Figure 4: Static Reliability Importance - Tableau Area Chart
Figure 5: Static Reliability Importance - Bar Chart

As you can see, the servers in this configuration are the most critical component, while the hubs are the least critical.

 

The following pictures show additional plots.

Figure 6: RI vs. Time Plot
Figure 7: System Reliability Plot
Figure 8: System Failure Rate Plot
Figure 9: System pdf plot

Step 4: Use BlockSim's Analytical Quick Calculation Pad (QCP) to obtain some of the most frequently requested reliability results. For example, the MTTF (mean time to failure) of the system is about 42,135 hours, as shown next.

Figure 10: Analytical QCP