arrow_back_ios

Main Menu

See All Simulação e Análise See All DAQ See All Drivers API See All Utilitário See All Controle de vibração See All Calibração See All DAQ See All Portátil See All Industrial See All Analisadores de potência See All Condicionadores de sinal See All Acústica See All Tensão e Corrente See All Deslocamento See All Força See All Células de carga See All Multicomponente See All Pressão See All Deformação See All Strain Gauges See All Temperatura See All Inclinação See All Torque See All Vibração See All Acessórios See All Controladores See All Excitadores de medição See All Excitadores modais See All Amplificadores de potência See All Sistemas Shaker See All Soluções de teste See All Atuadores See All Motores de combustão See All Durabilidade See All eDrive See All Sensores de teste de produção See All Caixas de transmissão See All Turbo Charger See All Cursos de formação See All Acústica See All Monitorização de activos e processos See All Energia eléctrica See All Sensores personalizados See All NVH See All Sensores personalizados do OEM See All Vibração See All Integridade estrutural See All Transporte automotivo e terrestre
arrow_back_ios

Main Menu

See All nCode - Análise de Durabilidade e Fadiga See All ReliaSoft - Análise e gerenciamento de confiabilidade See All API See All Ruído do produto See All Ruído de passagem de veículos See All Electroacoustics See All Identificação da fonte de ruído See All Ruído ambiental See All O que é potência sonora e pressão sonora See All Certificação de ruído See All Teste de produção e garantia de qualidade See All Análise e Diagnóstico de Máquinas See All Monitoramento de integridade estrutural See All Teste de bateria See All Introdução à Medição de Energia Elétrica Durante Transitórios See All Diagrama de circuito equivalente do transformador | HBM See All Sensores OEM para a indústria agrícola See All Sensores OEM para aplicações robóticas e de torque See All Dinâmica estrutural See All Ensaio das propriedades dos materiais

How to Effectively Plan for FMEA Challenges to Improve Quality and Save Costs

A commercial developer of precision special-purpose test equipment asked us for guidance and review of their newly developed Failure Modes and Effects Analysis (FMEA) program for one of their automated test systems. In this case reliability was important to lessen lost time/revenue impact. If the test equipment failed during the week-long test sequence, the test had to start from the beginning – severely hurting the customer’s production schedule and threatening the reputation of the test equipment manufacturer. The analysis was a unique challenge because the FMEA focused on the software that controlled the test equipment, rather than on the test equipment hardware which was largely commercial off-the-shelf (COTS).

Thanks to the early efforts of the military and aerospace industries to prove the merits of FMEA, this analysis has been shown to be applicable to commercial organizations as a means to identify ways to save money in long term products and projects, as in the above example. FMEA helps to find unacceptable consequences of every kind of component failure, identifies undesirable (but perhaps acceptable if unlikely) consequences of component failures, and improves system reliability by identifying weak links in the reliability chain – finding where the aggregate reliability of the product might be improved by use of alternate components, or by design changes.

An FMEA can be a tedious undertaking, which means without the right expertise it can be error-prone. Fortunately, this can be mitigated by a structured process that guides the effort and assures that the analysts remain on the right track.

Step 1

 

You must first decide what the lowest level of abstraction will be for the analysis. For a hardware FMEA, these could be electronic components like transistors, hardware modules like signal conditioning circuits that occupy part of a circuit board, whole circuit boards, and so forth. For a software FMEA, these components could be variables, messages and control signals among modules, modules themselves, etc.

Step 2

 

You must then establish analysis rules that the stakeholders and analysts can agree that make sense for a particular FMEA given its ultimate application. The idea is to assure that each analyst considers the same possible failure modes of the same kinds of low-level components, provides consistent descriptions of the components and their failure modes, and describes effects of mid-level failures and system-level failures in a consistent way. We have found that capturing mid-level and system-level failure effects in tables – shared by all analysts – makes it faster to proceed and avoids different people finding different ways to describe the same thing. Better yet, the table of system-level effects contains severity ratings for each effect (on a simple scale where the most severe effects are usually represented as 1 and benign effects as 4), so the severity figures predicted by different people for the same system-level effects are pre-agreed upon and consistent. The tables also make quality review of the FMEA easier and faster if worksheet cells are linked to table entries – allowing for the most efficient coordination amongst the team.

Step 3

 

You must have full understanding of the system to be analyzed. Especially for large or complex systems, someone should be appointed as analysis manager, and that person should assign parts of the analysis to appropriately qualified people – if the effort is to be run efficiently. Each person should become an expert on his/her assigned portion of the system and remain productive in their domain. In a system with hardware and software, system-level consequences of hardware failures that are manifested by software should be determined by the appropriate software person, and vice versa.

Step 4

 

The fourth step is performing the analysis and reviewing progress along the way. Fortunately, following the first three steps makes the effort easier, more efficient, and of better quality – where better quality means better consistency, thoroughness and usefulness. After all, the purpose of the FMEA is to gain clarity on the reliability of the system and the available options to bolster that reliability.

We have found that this approach works well for every kind of FMEA and we continually pursue process improvements. We are confident that if you have a product which is in production or has a long lifespan, an FMEA can ultimately save lifecycle cost and increase customer satisfaction through reduction of defects and the delays they cause. Explore HBM Prenscia Engineering Services and Solutions for more information and technical papers on this, and many other related topics.