arrow_back_ios

Main Menu

See All Simulação e Análise See All DAQ See All Drivers API See All Utilitário See All Controle de vibração See All Calibração See All DAQ See All Portátil See All Industrial See All Analisadores de potência See All Condicionadores de sinal See All Acústica See All Tensão e Corrente See All Deslocamento See All Força See All Células de carga See All Multicomponente See All Pressão See All Deformação See All Strain Gauges See All Temperatura See All Inclinação See All Torque See All Vibração See All Acessórios See All Controladores See All Excitadores de medição See All Excitadores modais See All Amplificadores de potência See All Sistemas Shaker See All Soluções de teste See All Atuadores See All Motores de combustão See All Durabilidade See All eDrive See All Sensores de teste de produção See All Caixas de transmissão See All Turbo Charger See All Cursos de formação See All Acústica See All Monitorização de activos e processos See All Energia eléctrica See All Sensores personalizados See All NVH See All Sensores personalizados do OEM See All Vibração See All Integridade estrutural See All Transporte automotivo e terrestre
arrow_back_ios

Main Menu

See All nCode - Análise de Durabilidade e Fadiga See All ReliaSoft - Análise e gerenciamento de confiabilidade See All API See All Ruído do produto See All Ruído de passagem de veículos See All Electroacoustics See All Identificação da fonte de ruído See All Ruído ambiental See All O que é potência sonora e pressão sonora See All Certificação de ruído See All Teste de produção e garantia de qualidade See All Análise e Diagnóstico de Máquinas See All Monitoramento de integridade estrutural See All Teste de bateria See All Introdução à Medição de Energia Elétrica Durante Transitórios See All Diagrama de circuito equivalente do transformador | HBM See All Sensores OEM para a indústria agrícola See All Sensores OEM para aplicações robóticas e de torque See All Dinâmica estrutural See All Ensaio das propriedades dos materiais
null

Residual Stress Measurement

Find out which are the most reliable methods to measure residual stresses directly with minimum damage to the structure’s surface

Determining Residual Stresses

Residual stresses can be present in any mechanical structure due to many causes, such as technological process:

  • plastic deformation or welding
  • non-uniform cooling of cast components
  • forging process

or surface treatments like:

  • shot peening
  • surface hardening

Residual stresses have the same role in a structure’s strength as common mechanical stresses. However, while stress due to external loads can be calculated with a degree of accuracy, residual stresses are difficult to foresee. It is, therefore, very important to have a reliable method able to measure them directly with minimum damage to the surface.

The Ring Core Method and the Hole Drilling Method

Two strain gauge-based technologies are often used for determining residual stresses: the ring core method and the hole drilling method.

The common feature of both methods is that after installation of the strain gauge rosette on the workpiece, the residual stress state is changed due to the mechanical process of drilling/coring. During this process, the residual stresses relax and release strains that are measured with strain gauges, and later are used for calculating the residual stress state.

With the ring core method, a ring-shaped groove is extracted around the respective strain gauge. 

With the hole drilling method, a milling cutter rotating at about 350,000 rpm and advanced by a stepper motor is used for hole drilling. The strain changes arising due to the step-by-step drilling of the hole into the work piece are detected by a strain gauge rosette designed specifically for this method.


Related Products

No more result to load

Recommended for you